THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATHA4030 Differential Geometry
7 November, 2024 Tutorial

X_ U\ %S 1. A pair of surfaces Si, S are called conjugate minimal surfaces if they are covered DKGASS{W
) \ by isothermal parameterisations X, Y such that 03&\ R0

\(:\1‘5% X, =Y, X, =Y,

That is, they satisfy the Cauchy-Riemann equations. By PDE, this means that
they are also harmonic and therefore S;, S5 are minimal. Show that the surface
parameterised by

Z;y =costX +sintY,t € R

is minimal by showing that Z; is also isothermal and harmonic. This means that if
we have a pair of conjugate minimal surfaces parameterised by X,Y, we can find a

1-parameter family of minimal surfaces Z; that continuously interpolates between
X (t=0)and Y (t =7/2).

2. Compute the Christoffel symbols of a surface of revolution given by

X(u',u?) = (f(u?) cosul, f(u?)sinu', g(u?)).

3. Recall that a diffeomorphism ¢ : S; — S5 is an isometry if for any p € S; and
v,w € TS5,
(v, w)p = (dpp(v), dpyp(W)) p(p)-
Show that ¢ is an isometry if and only if the arc-length of any parameterised curve
in Sy is equal to the arc-length of the image curve under .
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1. A pair of surfaces Sy, S are called conjugate minimal surfaces if they are covered
by isothermal parameterisations X, Y such that

Xy = —Y;,, Xy =Y.

That is, they satisfy the Cauchy-Riemann equations. By PDE, this means that
they are also harmonic and therefore S;, S5 are minimal. Show that the surface
parameterised by

Zy =costX +sintY,t € R

is minimal by showing that Z, is also isothermal and harmonic. This means that if
we have a pair of conjugate minimal surfaces parameterised by X,Y, we can find a
1-parameter family of minimal surfaces Z; that continuously interpolates between
X (t=0)andY (t =m/2).
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2. Compute the Christoffel symbols of a surface of revolution given by
X(ut,u?) = (f(u?) cosu', f(u?)sinu', g(u?)).
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3. Recall that a diffeomorphism ¢ : S; — S is an isometry if for any p € S; and
v,w € 1,51,
(v, W) = (dipp(v), dipp(W)) ()

Show that ¢ is an isometry if and only if the arc-length of any parameterised curve
in S is equal to the arc-length of the image curve under .
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